AN ARRANGEMENT OF THE GEOPHILIDE, A FAMLLY OF CHILOPODA.

By O. F. Cook.

That THE genera included in this family present structural characters of great diversity has been known since the publication of Meinert's investigations. That anthor attempted no subdivision of the family into groups higher than genera, a course to be explained by the fact that the number of genera recognized by him was very small, and by the further consideration that some of the more important structures were misunderstood. Thus the labrum of Orya is given as "bipartitum," while in reality it is entire, the bipartite appearance resulting from the fact that the part in question is arched when in place, and usually becomes wrinkled in the middle when depressed by a cover glass. The labrum of Orphutus is said by Meinert to be free; in reality it is completely coalesced and closely homologons to that of Orya. The labrum of the primitive Chilopoda was, in all probability, tripartite, and the coalescence of the parts with each other and with the frontal lamina are to be viewed as deviations from the ancestral form. Relationships can not, however, be inferred merely from such a fact as coalescence; Orya and Sehendyla have the labrum entire and completely coalesced, and yet represent two very distinct lines of development.

The present method of describing the mandibles has been another somrce of confusion. As in other Chilopoda the mandibles of Geophilide may be supposed to have had originally both pectinate and dentate lamellar. The compound pectinate lamellie of Dicellophilus, ${ }^{1}$ Orya and Himantarium are evidently the homolognes of the laciniate processes of the mandibles of Scolopendride and Lithobiida, while the mandibles of such genera as Geophilus and Schendyla have developed differently, the laciniate processes being now represented by a row of simple spines. Thus one of the simple spines of Geophitus is to be looked upon as homologne of a whole "pectinate lamella" in Himantarium, and the mandibles of the two genera are structurally much wider apart than

[^0]conld be inferred while the opinion held that the so-ealled "pectinate lamellae" in the two cases were structural equivalents.

That the dentate lamelle have been suppressed in Dicellu and Orya is a case of apparent similarity between genera distinct by nearly all possible characters, and an example of the principle that the presence or suppression of a primitive structure or character is not of itself an evidence either of close aftinity or wide divergence.

Since the publication of Meinert's works the number of described genera has greatly increased; likewise the desirability of some arrangement whereby their affinities may be made apparent. Uufortnately, the descriptions of new forms are often very incomplete and omit the most important data, those to be drawn from the month parts. Notwithstanding this neglect, it is evident fiom many specific descriptions that the number of genera yet to be recognized is considerable, and it would seem that a statement of the aftinities already manifested will aid in subsequent study.

That a complete arrangement, such as is here proposed, can in the present state of the subject be entirely correct or satisfactory is not to be expected. Cases of mecertain and deficient data are noted in sereral places. The groups here proposed as families seem to have, by analogy with other classes and witli other Chiloporla, ample structural basis for such recognition. The external form and habit are almost identical for the entire gronp, and the structural differences are not to be explained as correlated with adaptations to localities or hosts, but are rather the accumulated result of variation without the interference of any important principle of selection, a history the more possible becanse the changes are mostly in the direction of degeneration. From this consideration we may explain the confusing fact that in the different groups there are frequent examples of the preservation of some primitive eharacter which the other members of the family may have lost, and on the other hand there are numerons cases of parallel variation. Of this last the pleural pores are a good example. These may be unmerous and distinct, doubtless the primitive condition, and the one which appears in Scolopendride; they may be chstered about two or more large cavities in the pleurif, or they may be entirely wanting. In the gemus Geophilus the first and second conditions are present, and, if some descriptions are to be trusted, also the third. To suppose that a character which may differ in closely related species can be of use as an evidence of aftinity between genera or families wonld be clearly unreasonable. Aud yet poriferons foveole cntirely smilar to those of some species of Geophilus oceur in Schendyla and several related genera, in Ballophilus, and Dignathodon. Thus animals with widely divergent types of labrum, mandibles, and other parts, live in the same localities, have the same habits, and eat the same food with apparently equal success, so that it seems impossible to imagine that special advantages pertain to the different adaptations.

The opinion has recently been advanced that the Geophilide and Scolopendridee shonld rank as orders, ${ }^{1}$ the distinction being based on the number of segments and spiracles. That a merely quantitative difference is sufficient for ordinal distinction may well be doubted. At the same time the recognition of groups of Epimorplaa higher than families is desirable and possible, but they can hardly be more than snperfamilies. Indeed, it is not easy to suggest a diagnostic structural difference between the Scolopendroidse and Geophiloidre. The two superfamilies may, however, be defined as follows:

Superfamily SCOLOPENDROIDA.

Antemne with 17-33 joints; eyes present or wanting; basal lamina obsolete; prosternal teeth present or wanting; spiracles $9-19$; ventral pores wanting; last pleure porose, more or less produced caudad; seg. ments 21-23, constant for genera and species.

Superfamily GEOPHILOID F.

Antemad with 14 joints: eyes wanting; basal lamina present; prosternal teeth rudimentary or wanting; spiracles present on all pediferous segments except the first and last; ventral pores usually present; last pleure not produced, sometimes eporose; segments 31-173. not constant for genera, rarely so for species.

That future study will necessitate the recognition of family types among the Scolopendroidre is not improbable; the families of Geophiloidæ may be distinguished by the following artificial key:

ANALITICAL KEY TO THE FAMILIES OF GEOPHILOID.E.
A. Ventral pores wanting; suprasentella in five rows; last pleurae ocenpying three segments

Gonibregmatide。
Ventral pores distinct in all cases where suprascntella are present; last pleuro affecting last segment only
B.
B. Basal segment very broad, concealing the plenr:t of the prehensors............ C.

Basal segment not or searcely broader than the cephalic lamina, the prehensorial

C. Ventral pores in one median central or posterior area.................................. . .

Ventral pores in two or more areas, anterior and posterior F.
D. Jabrum entire; mandibles with one pectinate and $1-3$ dentate lamellie; rentral pores, if present, in a central area

Schendylid.E.
Labrum tripartite, mandibles withont dentate lamelle; ventral pores, if present seldom in a central area
E. Mandibles with one pectinatelamella; labrum tripartite, the lateral parts geatly reduced or rutimentary Dignathonontide.
Mandibles with dentate and pectinate lamellar ; labım entire
F. Last plenra eoxieform, withont pores; anal legs murmed; antrunar atten-
wate
ORYID.E.

[^1]

GONIBREGMATIDAE, new family.

Antenne filiform; frontal lamina coalesced; cephalic lamina not concealing the prehemsors; prebasal lamina obsolete: basal lamina broad; mouth parts mknown; pehensorial sterum very broad; supraseutella present in five rows; rentral pores wanting; last sternmm very small; last plemae enormonsly develoned, extending along three segments; pores very mmerons; anal pores wanting; anal legs carinate, five-jointed, withont claw. Pairs of legs, 161.

Genus GONIBREGMATUS, Newport.

Gonibregmatus, Newpont, Proc. Zool. Soc. London, CALA, p. 180, 1842.
Distribution.-Philippine Islands.
Typr.—Gomibregmatus camimgii. Newport.
The known clanacters of this genms are so remarkable that others eqnally interesting are to be expected from an examination of the montli parts.

> ORYIDA, new family.

Antenne attennate or subfiliform; frontal lamina coalesced or distinct; cephatic lamina concealing the prehensors; prebasal lamina obsolete; basal lamina broad; labum entirely coalesced; mandibles with several pectinate lamelle; no dentate lamellae; labial stermm entire, simple, or provided with processes; labial palpi one-jointed, with or withont processes; interior labial palpus distinct; maxillary papus with (law simple or pectinate; prehensorial stermm very broad; supaseutella present in one or more rows; ventral pores in $1-4$ transverse inclefinte areas; last stermm broad; the pleure not inflated, without pores; anal pores wanting; genital palpi two-jointed; anal legs six-jonted, withont clawr. Pairs of legs, 67-125.

> Genus ORYA, Meinert.

> Orya, Meinert, Nat. Tidsskr. YiI, p. 14. 1870.
> Type.-Orya barbarica (Gervais) Meinert. ${ }^{1}$
> Distribution.-North Africa; Spain.

Genus ASPIDOPLERES, Porat.
Aspidoleres, Porat, Bih. t. k. Svenska Vet. Akad. Hand., Afd. IV, No. 7, p. 15, 1893.
Type.-Aspiatopleres intercalatus, Polat.
Distribution.-Damaraland.

Genus ORPHN A US, Meinert.

Orphucus, Meinert, Nat. Tidsskr., V'II, p. 17, 1870.
Type.-Orphnceus phosphoreus (Linnieus). ${ }^{1}$
Distribution.-Tropies of both hemispheres.

Genus NOTIPHILIDES, Latzel.

Notiphilides, Latzel, Zoologischer Anzeiger, IL1, No. 68, p. 546, 1880.
Type.-Notiphilides maximiliani (Humbert and Saussure). ${ }^{2}$
Distribution.-Mexico.
It may be that Mesocanthus, Meinert, should be placed in this family, but though the mandibles are said to have only pectinate lamella, it wonld appear from Meinert's diagram that they are of a character entirely different from those of Orya and Orphncus.

Family HIMANTARIDDA, new name.
Notiphilida, C. L. Koch, System der Myriapoden, 1847.
Antenna attemate; frontal lamina coalesced or distinct; cejhalie lamina concealing the prehensors; prebasal lamina obsolete; basal very broad; labrum entire, free; mandibles with one dentate and sereral pectinate lamella; labial sterum entire, simple; labial palpus onejointed; iuterior labial process distinct; maxillary sterumm entire; claw of maxillary palpus excavate (spoon-shaped), more or less pectinate; prehensorial sternum very broad, with chitinons lines; suprascutella present, in one or more rows, or wanting; ventral pores iu one central area; anal pleuræ more or less inflatef, with few or many pores; anal pores wanting; genital palpi two-jointed; anal legs sixjointed, without claw. Pairs of legs, 6it-173.

Genus HIMANTARIUM, C. L. Koch.
Himanturium, C. L. Koch, System der Myriapoden, p. 82, 1847.
Type.-Himantarium gabrielis (Linmeus). ${ }^{3}$
Distribution.-South Europe; North Africa.
Genus BOTHRIOGASTER, Selivanoff.
Notiphilus, C. L. Koch, System der Myriapoden, p. 82, 1847.
Bothriogaster, Seliwanoff, Zool. Anzeiger, NLIII, p. 620, 1879.
Type.-Bothriogaster siguatus (Kessler). ${ }^{4}$
Distribution.-Greece to Turkestan.

[^2]Notiphilus has not been identified by recent writers, aud was considered by Meinert to be a synonym of Himantarium.' Koch's description is, however, quite extensive and explicit, and offers several characters sufficient to distinguish thr genns from Orya and Hmantarium. From Bothriogaster it is difficult, if mot impossible, to indicate distinctions; indeed there is no evident reason why Seliwanoff's description and figures of Bothriogaster signutus, Kessler, do not correspond with Koch's Notiphilus tomiutus, ${ }^{2}$ as Selwanoff has himself suggested by placing Sotiphilus taniatus as a doubtful synonym of signatus. Later on sigmutus was reported from Greece by Dr. Kiarsch, ${ }^{3}$ so that not even a difference in habitat remains. Nevertheless it can hardly be asserted with confidence that the animals are specifically and generically the same, but the agrement in all important characters is so great that a generic difference is exceedingly improbable. The fact that Koch gives the legs as varying from 100 to 154 suggests the possibility that he may have had more than one species under observation. The matter will probably remain more or less in doubt until the Creek Myriapoda are better known, but for our present purpose it is sufficient to point ont that Notiphilus would be a valid genus, were not the name preoccupied in the Diptera, and that Bothriogaster may replace it until the typieal species are shown to be distinct, and not congeneric.

> Genus STlGMATOGASTER, Latzel.

Sti!matogaster, Latzel, Myr. Oest.-Ung. Mon., I, p. 211, 1880.
Type.-Stigmatogrestor gracilis (Meinert). ${ }^{4}$
Distribution.-Sonth Enrope; North Africa.

> Genus STYLOLAEMUS, Karsch.

Stylolomus, Karsch, Troschel's Archiv f. Naturges., Jahrg. XLVII, Heft. 1, p.9, figs. $3,3 u, 3 b, 1881$.
Type.-Stylolamus peripateticus, Karsch.
Distribution.-Tripoli.
The type and only specimen of this genus is in the Berlin Musemm. It is in very poor condition, but does not possess the abnormal characters which might be inferred from the figures cited above. Its affinities are donbtless with the Notiphilidie, and it does not appear to coincide with any of the genera. In certain of its external characters it suggests Pectimiunguis. No examination of the month parts was possible.

[^3]Genus CHOMATOBIUS, Humbert and Saussure.
'homutobins, Heaheert and Sacsstre, Revie et Mag. d. Zool., p. 205, 1870.
T'ype'-('homatobius mexicanus (Sanssme). ${ }^{1}$
Distribution.-Mexira.
HSARGIDA, new family.
Antenne tiliform or erassate, not attemate; frontal lamina distinct (or coalesced?); cephalic lamina concealing the prehensors; prebasal lamina obsolete; basal plate broad; month parts mknown; prehensorial stermm very broad; supra-scutella wanting; ventral pores in two areas, a circular anterior and a brod, transerse posterior; anal plenrat inflated, with mmerous pores: anal pores wanting; genital palpi two-jointer; anal legs five or six jointed, with a claw. l'airs of legs, .09-99.

DISARGUS, new genus.

Type.-Hmuuturium (?) striatum (Pocock). ${ }^{\text { }}$
Distributoon.-Madras.

> Genus HIMANTOSOMA, Pocock.

Himantosoma, Pocock, Amm. d. Mns. ('iv. di Genova, 2- ser., X, p. 428, 1891.
Type.-Himantosomatypicum, locock.
Distribution.-Mergui Archipelago, Burmah.
Besides these genera there are probably two or more others in the oriental region represented by species described by Meinert and Poeock under Ilimanturium, but evidently very little related to gabrichis. The characters now known are not sufficient, however, to give much base for an estimate of affinities. The present family has been recognized on acronnt of the mifue eombination of faracters which make affinities with the other families very improbable, thongh much must depend on the month parts.

BALLOPHILIDE, new family.

Antenne geniculate, subclavate: frontal lamina not distinct: cephatic lamina concealing the prehensors; prebasal lamina obsolete; basal very broad; labrum entire, not chitinons; mandibles with one pectinate and one dentate lamela; labial stemmm entire, simple ; labial palpus two-jointed; interior labial process distinct; maxillary stermm dividerl; claw of maxillary palpus excarate, the margin pectinate; prehensorial sternum very broad, chitinons lines wanting; sumascutella wanting ; ventral pores in an oval posterior area, consisting of a raised, perforated, chitinons plate; anal plem:e not inflated, with two

[^4]large pores more or less concealet; anal pores present; genital palpi; anal legs strongly crassate, six-jointed, without claw. Pairs of legs, 63-73 (87-91 in Mesocanthus).

BALLOPHILUS, new genus.
Type.-Ballophilus clacicornis, Cook, new species, in the National Museun collection.

Distribution.-Upper Guinea.

Genus MESOCANTHUS, Meinert.

Mesocanthus, Meinert, Nat. Tidsskr., Vif, p. 34, 1870.
Type.-Mesocanthus allous. Meinert.
Distribution.-Tmuis.
This gems is assigned to the present family provisionally, and the family description was not arranged to contain it. According to Meinert's description and plates, there is great similarity with Ballophilns in the labrum. The mandibles are strikingly different from those of Orya and orphuatus, the other forms with several pectinate lamellar, and the rentral pores are in a single area. Selimanoff has described a species with pleural pores.

Genus TAENIOLINUM, Pocock.
Teniotinum, Pocock, Journ. Linn. Soc.. XXIV. p. 471, 1893.
Type.-Tieniolimm setosmm, Pocock.
Distribution.-St. Vincent.
SCIIEND YLIDA, new family.
Antenne filiform; frontal lamina coalesced; cephalic lamina not concealing the prelensors; prebasal lamina evident or concealed; basal lamina narow: labrm entire, free or roalescerl mandibles with one pertinate and $1-3$ dentate lamelle; labial sternm entire, simple, or with a process; labial palpus two-jointed, with a process; interior labial process distinct or united with palpusat base; maxillary stermm entire; claw of maxillary palpus simple or pectinate: prehensorial sternum moderately broad; chitinons lines present or wanting; suprascutella wanting; ventral pores in a median area or wanting; anal pleure not much infated, with few or many pores; anal pores wanting; genital palpi entire; anal legs five or six jointed, with or without claw. Pairs of legs, 39-71.

Genus SCHENDYLA, Bergsoe and Meinert.
schemdyla, Bergsoe and Meinert, Naturh. Tidsskr., IV, p. 103, 1866.
Type.-Schendyla nemoreusis (C. L. Koch). ${ }^{1}$
Distribution.-Enrope; North Africa; Eastern North America.
${ }^{1}$ Deutschl. Crust. n. Myr., Hft. 9, t. 4, 1837.

Genus PECTINIUNGUIS, Bollman.

Peetininuquis, Bollman, Proc. U. S. Nat. Mus., XII, p.212, 1889.
Type.—Pectiniunguis americamus, Bollman.
Distribution.-Lower California.
Genus ESCARYUS, Cook and Collins.
Escaryns, Cook aul Collins, Proc. U. S. Nat. Mus., XIII, p. 391, 1890.
Type.-Escaryus phyllophilus, Cook and Collins.
Distribution.-Central New York.
Genus NA N NOPHILUS, new name.
Namopus (BollmaN), Cook and Collins, Proc. U. S. Nat. Mins., XII I, p. 389, 1890.
Type.-Namophilus eximins (Meinert).'
Distribution.-North Africa .
CTENOPHILUS, new genus.
Type.-Ctenophilus africanns, new speries, Cook, in the National Mnsemm collection.

Distribution.-Liberia.
DIGNATHODONTIDE, new family.
Antenna filiform or snbelarate; frontal lamina distinct or coalesced; cephatic lamina concealing the pehensors; prebasal lamina present or obsolete; basal lamina broad; labrum tripartite, the lateral parts greatly reduced; mandibles with a single pectinate lamella; labial sternum deeply bilobed, simple; labial palpus one-jointed, simple; interior labial process present or obsolete; maxillary stermm entire; claw of maxiliary palpus rudimentary; prehensorial sternum not broad; chitinous lines present; suprasentella wanting; rentral pores in a median area or wanting; anal pleurs not greatly enlarged, pores few or many; anal pores present or wanting: genital palpi simple, or two-jointed. Pairs of legs, $5 \mathrm{y}-154$.

Genus DIGNATHODON, Meinert.
Dignathodon, Meinert, Naturh. Tidsskr., VII, p. 36, tab. 2, figs. 13-22, 1870.
Type.-Digmuthodon mierocephalum (Lucas).²
Distribution.-South Europe: North Africa.

Genus HENIA, C. L. Koch.

Menia, C. L. Kocir, System der Mrriap., p. 83, 1847.
Type.-Henia devia, C. L. Koch.
Distribution.-Greece.
The genns scotophilus, Meinert, was described withont reference to Menid. Pocock has pointed ont that the two genera are the same, and

[^5]that Scotophilus is preocempied. Bollman has proposed the generic name Meinertiu to take the place of Neotophilus, but this can not be used muless devia, the type of Menia, mad bicarinatus, the type of Scotop^{\prime} ilus, prove not to be congeneric. This is not impossible, for Koch's species is credited with 1.54 pairs of legs, while bicarinatus has only about half as many.

Genus CHATECHELYNE, Meinert.
Chaterhelyhe, Meinerit, Naturh. Tidsskr., VII,]. 44, 1sto.
Type.-Chatcehelyne resuriann (Newport).'
Distribution.-Sontls Europe: North Afric:a.

Family (xEOPHALIH) E, Leaclı.
(icophilide, LEACH, Trans. Limn. Soc. London, XI, pt. 11, p. 38t, 1814.
Antenne filiform; frontal lamina distinct or coalesced; cephalie lamina not concealing the prehensors; prebasal lamina present or obsolete; basal lamina narrow; labrum tripartite. Mandibles with a single peetinate lamella; labial sternum entire or bifid, simple or with a process; labial palpus two-jointed, simple, or with a process; interior labial process usnally distinct; maxillary sternum entire or divided; claw of maxillary palpus not excavate or pectinate; prehensorial sterum narrow, chitinous lines present or wanting; suprascutella wanting; rentral pores on posterior half of semments, not in a definite area; anal plemre more or less inflated, pores few or many: anal pores present or wanting; genital palpi two-jointed. Pairs of legs, 31-109.

Genus GEOPHILUS, Leach.
Geophilus, LEACH, Trans. Lim. Soc. Lomlon. NI, pt. H, P. 381, 1814.
Type.-Geophilus carpophatus, Leach.
Distribution.-Europe: North Afric:a.
Genus MECISTOCEPHALUS, Newport.
Mecistocephalns, Newront, Pror. Kool. Soce. London, 1'. 178, 1812.
Type.-Mecistocephulus "ttemurtus (
Distribution.-Wastern North America; Emope; North Afriea.
Genus ORINOPHILUS, new name.
Orinomus, Atrems, Sitzungsh. A. Kais. Akad. d. Wissens. W'ien, ('IV', p. 166, 1895.
Type.-Orinophilus oligopus (Attems).3
Distribution.-Austria.

[^6]SCHIZOTANIA, nev genus.
Type-Srhizotnenin prognutha, new species, in the National Mnseum collection.

Inistrilution.-!iberia.

PIESTOPHILUS, neve genus.
Type.-Piestophilus tenuitarsis (Pocork). ${ }^{1}$
Distribution.-Dominiea.

Genus LINOTAENIA, C. L. Koch.
Linoteria, C. L. Kocn, system der Myriapoden, p. 86, 1817.
Type-Linotaruin crasipipes (C. L. Kocll). ${ }^{2}$
Distribution.-Europe.
Genus TOMOTANIA, Cook.
Tomotaria, Соок, American Naturalist, XXIX, p. 866, 1895.
Type.-Tomotrenis purriceps (Wood). ${ }^{3}$
Distrilution.-California.

Genus AGATHOTHUS, Bollman.
-Igathothus, Bollmax, Bull. 46, U. S. Nat. Mus., p. 166, 1893.
Type.-Agathothus graeilis (Bollman).*
Distribution.-Teunesser.
Of the affinities of this gemus little can be asserted. It is placed here mostly becanse Bollman originally deseribed the species as a Scolioplanes.

> Family DICELLOPHILIDA, Cook.

Dicellophilidef, Соок, P'roc. I'. s. Nat. Mus., XVIII, p. 61, 1895.
Antemus filiform or subattemate; frontal lamina always distinet; cephalic lamina narrow, not concealing the prehensors; prebasal lamina obsolete; basal lamina very narrow; labrum tripartite, entirely free; mandibles with several pectinate lamella; labial stermm divided, simple; labial palpus and interior labial process similar in shape, distinct, apically spatulate; maxillary sternum entire; maxillary palpus slemder; claw simple; prehensorial stermun very narrow. without chitinous lines; suprascutella wanting; ventral pores wanting; anal pleure inflaterl, with mmeroms pores; anal pores present; genital palpi usmally twojointed; anal legs slender, six-jointed, without claw. Pairs of legs constant for earl species; in the different species, 43-101.

[^7]Genus DiCELLOPHILUS, Cook.
Dicellophilus, Cook, Proc. U. S. Nat. Mus., XVIII, p. 61, 1895.
Type.-Dicellophilus limatus (Wood). ${ }^{1}$
Distribution.-California.
Genus LAMNONYX, Cook.
Lamnonyx, Соok, Proc. U. S. Nat. Mus., XViII, p. 61, 1895.
Type.-Lammonyx leonensis, Cook.
Distribution.-Sierra Leone.
Genus MEGETHMUS, Cook.
Megethmus, Cook, Proc. U. S. Nat. Mus., XVIII, p. 61, 1895.
Type.-Tegethmus microporus (Haase). ${ }^{2}$
Distribution.-Philippine Islands.
GENERA NOT NOW RECOGNIZED As VALID.
ARTHRONOMALUS, Newport.
Type.-Arthronomahs longicornis (Leach) $=$ Geophilus longicornis, Leach.

CLINOPODES, C. L. Koch.
Type.-Clinoporles flavidus, C. L. Koch = Geophilus flavidus (C. L. Koch).

GEOPHILUS, Nevpport (not Leach).
Type.-Geophilus nemminatus, Leach = Linotrnia acuminata (Leach).
MECISTOCEPHALUS, Meinert (not Nevvport).
Type.-Mecistocephalas comiolensis (C. L. Koch) = Lamnonyx (arniolensis (C. L. Koch).

MEINERTIA, Bollman = SCOTOPHILUS, Meinert.
NECROPHLEEOPHAGUS, Newport.
Type.-Neerophoophagus longicornis (Leach) = Geophilus longicornis, Leach.

NOTIPHILUS, C. L. Koch.
Type.-Notiphilus temintus, C. L. Koch $=$ Bothriogaster tieniatus (1. L. Koch).

PACHYMERIUM, C. L. Köch.
Type-Pachymerium ferpugerm (C. L. Koch) = Mecistocephahus attematus (Say).

POABIUS, C. L. Koch.
Type-Poabius niteus. C. L. Koch $=$ (reophilus flavidus (C. L. Koch).
${ }^{1}$ Journ. Icad. Nat. Sci. Phila., V'. 1. 12, 1863.
${ }^{2}$ Ablı. u. Ber. (1. K. Zool. 11. Anth.-Ethn. Mus., Dresden, 1886-87, No. 5, p. 106.

POLYCRICUS, Saussure and Humbert.
Described as a subgenus of Geophilus.
SCNIPEUS, Bergsoe and Meinert.
Type.-Scnipurus focoolatus, Bergsoe and Meinert $=$ Geophilus foveolatns (Bergsoe and Meinert).

SCOLIOPLANES, Bergsoe and Meinert.
Typr.-S'colioplanes maritimus (Leach) $=$ Linoternia maritima (Leach).
SCOTOPHILUS, Meinert.
Type-scotophilus bicarinatus, Meinert = Henia bicatinata (Meinert).
STENOTANIA, C. L. Koch.
Type.-stenoternin linetris, C. L. Koch = Ceophilns linearis (l'. L. Koch).

$$
\text { STRIGAMIA, Gray }=\text { GEOPHILUS, Leach. }
$$ STRIGAMIA, Wood.

Type.-Strigamicu acuminatus (Leach) $=$ Linotienia acuminata (Leach). STRIGAMIA, Selivvanoff.

Type.-Strigamia parviceps, Wood $=$ Tomotenia parviceps (Wood).

[^0]: ${ }^{1}$ A new genns partially equivalent to Mecistocephalus of Meinert and recent anthors, but not of Newport. According to Meinert, the mandibles of Meristocephalus have only dentate lamella, but the reason for this view is not apparent.

[^1]: Silvestri, Orlers Oligostigmata and Plantastigmata, Ann. 1l. Mnseo Civico di Storia Nat. di Genova, NIV, pp. 623, 634, 1895.

 Proc. N. M. $95-5$

[^2]: ${ }^{1}$ Syst. Nat., Ed. X, p. 368, $1770 . \quad{ }^{3}$ Syst. Nat., Ed. NII, p. 1063, 1766.
 ${ }^{2}$ Revue et Mag. d. Zool., 1870, p. 205. ${ }^{4}$ Trudy, Russ. Entom. Olusz., VIII, p. 39. figs. $4,5$.

[^3]: Meinert has also described a "Himantarimm taniatum, new species" (Myr. Mus. Hann., III, p. 149), which of course conld not stand if Notiphilus is a synonymof Himuntarium. This is either an oversight or a complete disregard of the principle of priority.
 ${ }^{2}$ System der Myriapoden. p. 180, 1847; Die Myriapoden, II, p. 59, fig. 181.
 ${ }^{3}$ Yerzeichniss der von Herrn E. v. Oertzen in den Jahren 1884 und 1885 in Griechenland und anf Kreta gesammelten Myriapoden. Berliner Entom. Zeitschr., XXXII, p. 220 (1888).
 ${ }^{4}$ Naturh. Tidsskr., VII, p. 32, 1879.

[^4]: ${ }^{1}$ Essai d'une Fanne d. Myr. d. Mex., p. 132, 1860.
 ${ }^{2}$ Ann. Mag. Nat. Hist., (6) V', p. 248, pl. N11, fig. 4.

[^5]: ${ }^{1}$ Naturh. Tidsskr., VII, p. 57, 1870.
 ${ }^{2}$ Explor. scienl. 1. l’Agrie, p. 349, pl. 11, fig. 10.

[^6]: ${ }^{1}$ Trans. Linn. Soc., XIX, p. 435.
 ${ }^{2}$ Journ. Acad. Nat. Sri. Phila., H, p. 114.
 ${ }^{3}$ Sitzungsher. K. Akill. Wiss. Wien, CIV, p. 167, pl. 1, fig. 11.

[^7]: ${ }^{1}$ Aun. and Mag. Nat. Hist., 6 ser., II, No. 12, 11. $472,1888$.
 ${ }^{2}$ Deutschl. Crust. und Myriap., I't. 3, tah. 3, 1×35.
 ${ }^{3}$ Journ. Acad. Nat. Sci. Phila., V', p. 49, 186\%).
 +Ann. N. Y. Acad. Sri., P. 110, 18x7.

